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A simple and sensitive near-null technique for multichannel nanosecond time-resolved magnetic optical rotatory
dispersion measurements is introduced with a theoretical analysis describing the basis of the technique and
the effects of optical imperfections, photoselection-induced linear dichroism and birefringence, and the Faraday
rotation of the solvent and cell windows. This treatment identifies a potential artifact in photolyzed samples
that is associated with the coupling of photoselection-induced linear dichroism with the solvent-cell Faraday
rotation. Excitation geometries that minimize this problem are described. Experimental applications of the
technique to the ligand rebinding reaction of myoglobin-CO after ligand photolysis are presented in the
following article.

Introduction

The simple and sensitive technique for multichannel, nano-
second time-resolved magnetic optical rotary dispersion (TR-
MORD) measurements presented here is similar to a technique
developed previously in this laboratory to measure nanosecond
natural time-resolved optical rotatory dispersion (TRORD),1

except that the TRMORD technique incorporates a magnetic
field at the sample and a Faraday compensator to distinguish
the Faraday rotation of the solvent from that of the sample. The
basic optical principle of the TRORD/TRMORD technique is
a near-null polarimetric method, first described by Keston and
Lospalluto,2 that has been used previously for single-wavelength,
microsecond TRORD measurements.3,4 The nanosecond TR-
MORD technique is also closely related to a near-null ellipso-
metric technique developed in this laboratory to measure
nanosecond time-resolved magnetic circular dichroism (TRM-
CD).5,6 Although MCD is studied more often than MORD,
MCD being more easily interpreted than MORD, TRMORD
may, nevertheless, be preferred over the ellipsometric MCD
technique as a time-resolved measure of magnetic optical
activity because it requires fewer optical components and
presents potential signal-to-noise advantages.1 We present a
derivation of the optical principle of the technique and inves-
tigate possible artifacts and their amelioration, particularly those
associated with photoselection-induced ordering of the sample.
An application of the technique to the study of the microsecond
to millisecond kinetics of ligand rebinding after ligand photolysis
of the carbonyl adduct of horse skeletal myoglobin is discussed
in the following article.

Magnetic optical rotation (Faraday effect) and magnetic
circular birefringence (MCB) are closely related (circular
birefringence, the phase difference between circular polarization

components, is equal to twice the observed optical rotation),
and both terms may be used to describe the dispersive part of
magnetic optical activity. We shall generally use MCB in this
paper when describing magnetic optical activity as an extensive
quantity and MORD when referring to an intensive quantity.
Thus, MORD is used in this work when the rotation is expressed
as the specific magnetic rotation or as the specific molar
magnetic rotation, and MCB is used for the phase difference in
radians or degrees per unit field. With MCB expressed in
degrees, MORD is defined as

wherec is the concentration in grams per milliliter,d is the
path length in decimeters,M is the solute molecular weight,
and the subscripts sp and mol denote the specific magnetic
rotation and the specific molar magnetic rotation, respectively.7

The corresponding natural ORD terms have analogous defini-
tions.

Signal Analysis

As in the near-null measurement of natural ORD,1,2 an MORD
measurement is made by placing a sample between two crossed
polarizers and then rotating one polarizer, first clockwise (facing
the probe source) and then counterclockwise, by a small angle
â from the crossed position. The signal is defined as the
difference of the detected intensities for the clockwise and
counterclockwise positions, normalized to their sum,
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where the subscript D denotes the direction of the magnetic
field, parallel (P) or antiparallel (A) with respect to the probe
propagation direction. It is simple to show that this signal is
proportional to the MCB of the sample, for small MCB. Using
the small-angle approximation, the intensity transmitted through
crossed polarizers is proportional to the square of the total
rotation (H(MCB)/2 ( â)2 for a parallel field of strengthH.
Thus

for H(MCB) , â, where we assume that the Faraday rotation
contribution of the solvent and cell windows is canceled by an
additional optical device, a Faraday compensator, placed
between the polarizers. (For single-wavelength measurements,
an appropriate rotation of one of the polarizers suffices to cancel
the solvent-cell Faraday rotation. Faraday compensators for
multichannel measurements are described in the following
article.) A schematic description of the changes in the plane of
polarization of the probe light during a near-null MORD
measurement is shown in Figure 1. Below, we present a full
Mueller calculus analysis of the technique incorporating the
Faraday effect of the solvent and its cancellation with a Faraday
compensator.

This technique measures the total optical rotation regardless
of its source. Thus, both natural and magnetic CB are measured
in chiral samples. However, because the MCB changes sign
upon reversal of the magnetic field direction, CB and MCB
can be separated by performing a measurement at opposite field
directions. That is,

whereH is the magnetic field intensity in Teslas. CB and MCB
are isolated as

with circular birefringence expressed in radians.

Mueller Calculus. The notation used here is similar to that
in optical analyses presented previously for near-null measure-
ments of time-resolved linear dichroism8 and TRMCD.9 The
intensity and polarization state of light is represented as a Stokes
vector

whereS1, S2, S3, and S4 are the total intensity, difference in
intensities polarized along the vertical and horizontal directions,
the difference in intensities polarized at(45° with respect to
the vertical direction, and the difference in intensities between
left and right circularly polarized light, respectively. The
normalized Stokes vector for unpolarized light isS1 ) 1 andS2

) S3 ) S4 ) 0.

A 4 × 4 Mueller matrix

describes the effect of an optical element on the polarization
state of incident light as

and forN optical elements as

The final state of light is given bySf. (Only the first element,
the total intensity, is typically measured directly by detectors,
e.g., photomultipliers.)

Linear Polarizers. The Mueller matrix for a linear polarizer
is shown in Chart 1, wheretmax is the maximum transmission
andr is the extinction ratio (r ≡ tmin/tmax).10 The angleθ is the
azimuthal angle defined by the angle between the transmission
axis and the laboratoryX axis (horizontal).

Stray Linear Birefringence.The general Mueller matrix for
a uniaxial linear birefringent element is shown in Chart 2, where
φ and δ are the azimuthal angle and the retardance, respec-
tively.10

Figure 1. Schematic diagram of the optical layout of a near-null
instrument for TRMORD measurements using a crossed pump-probe
geometry: Xe, xenon flashlamp; CL, collimating lens; LP1, LP2, LP3,
linear polarizers; M, magnet with field collinear with the probe
propagation direction; S, sample; FC, Faraday compensator; OMA,
optical multichannel analyzer;Θ, magnetic optical rotation of solvent
and windows (an optical rotation ofΘ is applied in the opposite
direction by the Faraday compensator);(â, small rotation angle of
polarizer;R, natural and magnetic optical activity of the sample; signal,
ratio of difference to the sum of intensities for(â polarizer rotations;
X, Y, Z, laboratory coordinates. The open-headed arrows indicate the
polarization direction of the probe light. LP1 transmits probe light
polarized along theX axis, LP2 is polarized along theY axis, and LP3
polarizes the excitation beam in the Z direction.
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Sample. In the most general case, a sample can exhibit linear
dichroism, linear birefringence, circular dichroism, and circular
birefringence. The general Mueller matrix for a sample can be
written as

whereI is the unit matrix and

with

expressed in radians.A, λ, n, and d are the absorbance,
wavelength, refractive index, and path length, respectively.11-13

The subscripts denote the polarization direction of the incident
light, with the subscripts l and r specifying left and right circular
polarization. Each of the 16 elements ofM s is given by an
infinite series containing products of linear and circular effects.
If LD, LD ′, LB, and LB′ are small (optically thin sample), then

it is useful to consider only the first three terms of eq 13

CHART 1

MLP )
fmax

2 (1 + r (1 - r)cos 2θ (1 - r)sin 2θ 0

(1 - r)cos 2θ (1 - r1/2)2cos2 2θ + 2r1/2 (1 - r1/2)2sin 2θ cos 2θ 0

(1 - r)sin 2θ (1 - r1/2)2sin 2θ cos 2θ (1 - r1/2)2sin2 2θ + 2r1/2 0

0 0 0 2r1/2
) (11)

CHART 2

MLB ) (1 0 0 0

0 cos2 2φ + sin2 2φ cosδ sin 2φ cos 2φ(1 - cosδ) -sin 2φ sin δ

0 sin 2φ cos 2φ(1 - cosδ) sin2 2φ + cos2 2φ cosδ cos 2φ sin δ

0 sin 2φ sin δ -cos 2φ sin δ cosδ
) (12)

M s ) e-A(I - F + 1/2F
2 - ...) (13)

F ) (0 LD LD′ -CD

LD 0 -CB -LB′

LD′ CB 0 LB

-CD LB′ -LB 0
) (14)

A ) 1.151(Ax + Ay)

LD ) 1.151(Ax - Ay)

LD′ ) 1.151(A45° - A135°)

LB ) 2π(nx - ny)d/λ

LB′ ) 2π(n45° - n135°)d/λ

CD ) 1.151(Al - Ar)

CB ) 2π(nl - nr)d/λ (15)

M11
s ) e-A

2
(2 + CD2 + LD2 + LD′2)

M12
s ) e-A

2
(-2LD + CB‚LD′ - CD‚LB′)

M13
s ) e-A

2
(-2LD′ + CD‚LB - CB‚LD)

M14
s ) e-A

2
(2CD + LD′‚LB - LD‚LB′)

M21
s ) e-A

2
(-2LD + CD‚LB′ - CB‚LD′)

M22
s ) e-A

2
(2 - CB2 + LD2 - LB′2)

M23
s ) e-A

2
(2CB + LD′‚LD + LB‚LB′)

M24
s ) e-A

2
(2LB′ - CB‚LB - CD‚LD)

M31
s ) e-A

2
(-2LD′ + CB‚LD - CD‚LB)

M32
s ) e-A

2
(-2CB + LD′‚LD + LB‚LB′)

M33
s ) e-A

2
(2 - CB2 + LD′2 - LB2)

M34
s ) -e-A

2
(2LB + CB‚LB′ + CD‚LD′)

M41
s ) e-A

2
(2CD - LD′‚LB + LD‚LB′)

M42
s ) -e-A

2
(2LB′ + CB‚LB + CD‚LD)

M43
s ) e-A

2
(2LB - CB‚LB′ - CD‚LD′)

M44
s ) e-A

2
(2 + CD2 - LB2 - LB′2) (16)
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as presented previously by others.13 In many cases, only the
first term in the series expansion for each component ofM needs
to be considered in an optical analysis. Note that for samples
that possess only one optical property, the infinite series in eq
13 can be summed to give an exact trigonometric expression,
such as that in eq 12 for a linearly birefringent sample.

A magnetic field induces field-dependent terms into the linear
and circular dichroisms and birefringences of the sample. Only
the induced circular terms are of appreciable size,14 and these
can be incorporated into the circular dichroism and birefringence
as15

where CD and CB now refer to the natural circular effects and

ψ being the angle between the magnetic field direction and the
propagation direction of the probe light. MCD and MCB are
defined analogously to natural CD and CB (eq 15)

where the subscript H indicates the absorption or refractive
difference induced by the application of a magnetic field of unit
intensity. The sample solvent and cell windows, although
transparent and achiral, will have a substantial MCB or Faraday
effect, and consequently, the total magnetic optical rotation
(MCBT) is

where the subscript SW denotes the contribution from the
solvent and cell windows.

To reduce the number of terms in the expansion, the total
circular dichroism and circular birefringence for the sample will
be defined as the field-dependent sum of the natural and
magnetic components of the optical activity

Henceforth, the subscript sample will be dropped and MCD and
MCB will refer solely to sample properties while MCBSW will
refer to the independent contribution to the optical rotation from
the windows and solvent as given in eq 20.

Due to the large disparity in concentrations, the MCBSW term
is usually much larger than MCB. However, the MCB of the
sample is the desired quantity, so the MCB of the solvent and
cell windows must be experimentally distinguished from that
of the sample. Because of the wavelength dispersion of the
solvent-cell rotation, accurate measurement of the sample MCB
requires that the polarization plane of the probe light be rotated
in an opposite direction by an angle equal in magnitude to the
solvent-cell rotation at each measurement wavelength. This
counterrotation is accomplished by a Faraday compensator.

Faraday Compensator.The Mueller matrix for an ideal
Faraday compensator is

where FC is the total wavelength-dependent optical rotation of
the Faraday compensator from any combination of natural CB
or MCB.9 (Note that the optical rotation of the Faraday
compensator, FC, is defined in eq 22 with a sense of rotation
opposite to that for the natural CB or MCB of the sample.)

MORD Measurements. The experimentally detected signal
in a near-null MORD measurement is the ratio of the difference
to the sum of intensities corresponding to small rotations,(â,
of the first (horizontal) polarizer from its crossed position
relative to a second (vertical) polarizer. Thus, the signal at a
given magnetic field orientation,D, from eqs 3 and 7 is

The measured signal calculated from eq 10 becomes

whereΣ and ∆ are the matrix sum and the matrix difference
for the two polarizer orientations(â and LB1, LB2, LB3, and
LB4 are the linear birefringences from the front and back of
the sample and compensator cells, respectively. As explained
above, the measurement is performed at two magnetic field
directions, P and A, to distinguish natural from magnetic rotation
in chiral samples.

Ideal Case. In the ideal case, all optical elements are perfect,
linear birefringence is negligible, the Faraday compensator
exactly cancels the Faraday effect of the solvent and cell, and
â is large compared to the optical properties of the sample. The
measured signal is then

As â is typically much less than 1 rad, this results in a significant
magnification of the optical rotation signal. In oriented samples,
however, this method detects not only the optical rotation but
also the diagonal component of linear dichroism, as shown in
eq 25. In isotropic samples, which do not exhibit linear
dichroism, the measured signal reduces to

in agreement with the heuristic derivation presented in eq 4.
The induced linear dichroism of photoselected samples does
not generally pose a problem for optical rotation measurements
because LD′ may be made negligible with proper selection of
the excitation geometry (see discussion below).

Nonideal Cases.Expanding eq 24 in terms of all the optical
effects present gives a complete description of the measured
signal. However, the complete expression is cumbersome and
difficult to interpret, so each effect is first considered separately
and then the most significant interactions between effects are

CD f CD + HDMCD

CB f CB + HDMCBT (17)

HD ) H cosψ (18)

MCD ) 1.151(AL - AR)H

MCB ) 2πd(nL - nR)H/λ (19)

MCBT ) MCBsample+ MCBSW (20)

CDD
T ) CD + HDMCDsample

CBD
T ) CB + HDMCBsample (21)

MFC ) (1 0 0 0
0 cos FC -sin FC 0
0 sin FC cos FC 0
0 0 0 1

) (22)

sD )
S1(+â) - S1(-â)

S1(+â) + S1(-â)
(23)

sD )
MLP2MLB4MD

FCMLB3MLB2MD
SMLB1∆MLP1S

MLP2MLB4MD
FCMLB3MLB2MD

SMLB1ΣMLP1S
(24)

sD )
-(LD′ + CBD

T)

â
(25)

sD )
-CBD

T

â
(26)
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considered. We present these nonideal cases in order to examine
the conditions required for an accurate measurement of the signal
as given by eq 26.

Effect of Imperfect Polarizer Extinction.Neglecting other
imperfections, eq 24 with finite polarizer extinction,r, becomes

Equation 27 shows that finite polarizer extinction attenuates the
signal and sets a limit on the minimum selection ofâ. Useful
polarizer extinctions range from 10-6 to 10-4, giving a minimum
â range of 1-10° in order to obtain at least 1% accuracy in eq
27.

Signal Saturation.A Faraday compensator cancels the large
Faraday effect of the solvent and cell windows. However,
magnetic optical rotation from the sample itself may also be
substantial in magnitude at very high fields. In this case, the
measured signal becomes

where the Faraday rotation from the sample is considered to be
comparable to or larger thanâ. Thus, the effect of a large
sample optical rotation is to attenuate the signal magnification,
i.e., signal saturation. As there is a large difference in the
wavelength dependence ofâ, MCB, and MCD, this saturation
can have a wavelength dependence that distorts measured band
shapes. Along with eq 27, avoidance of the signal saturation
in eq 28 may also set a limit on the minimum selection ofâ.
As an example, for a sample rotation of 100 mdeg, aâ value
of at least 1° is required to keep attenuation below 1%.

Effects of Imperfect Faraday Compensation, Polarizer Mis-
alignment, and Imperfect Polarizer Rotations.Three cases are
presented in this section: (1) rotations to plus and minus angles
not exactly equal in magnitude toâ, (2) polarizers not perfectly
crossed, and (3) Faraday effect of the solvent and cell not exactly
canceled. Cases 1 and 2 are combined in eq 29 (the second-
order circular terms in the denominator of eq 28 are neglected
for clarity)

where the first polarizer is oriented atφ from horizontal, the
second is at 90°, and the measurement rotations are done atâ
+ δ and-â. That is, the polarizers areφ degrees from crossed
and the measurement rotations are unsymmetrical byδ. By
setting eitherδ or φ equal to zero, the effects of each separate
misalignment can be determined. These imperfections shift the
baseline and lead to an attenuation of the signal. Because both
result from a misaligned polarizer, they have identical, usually
constant, wavelength dependences.

For case 3, the measured signal becomes

with

Equation 30 shows that imperfect cancellation causes a baseline
shift and an attenuation of the signal. The magnitude of the
shift is proportional to the difference between the rotations
associated with MCBSW and the Faraday compensator. In the
case of a Faraday compensator comprising a solvent blank in
an identically homogeneous field, this difference is proportional
to any difference in field strength and has a wavelength variation
that is given approximately by the Drude equation.16 However,
if there are differences in composition of the solvent and cell
in the sample and compensator or if the natural ORD of a chiral
solution is used as the Faraday compensator, then there will be
a more complicated wavelength dependence to the shift in eq
31. As one approaches an absorption band, this effect becomes
more pronounced and can be approximated by using separate
Drude equations for the solvent-cell and the FC. Assuming a
single transition dominates the Drude equation for each, we get

where the subscriptedλ’s denote absorption wavelengths for
the solvent and cell windows (SW) or the Faraday compensator
material (FC) and the magnitudes of the rotations for SW and
FC are equal by construction at wavelengths far from the
absorption wavelengths.

Field Inhomogeneity.This section describes the effect of field
inhomogeneity on near-null MORD measurements. Field
inhomogeneity can affect such MORD measurements when the
Faraday rotation of the solvent-cell and the optical rotation of
the Faraday compensator vary differently over the cross section
of the probe beam, as when magnets for the sample and Faraday
compensator have different field homogeneities or when a chiral
sample is used to compensate a nonuniform sample field.
Although the Faraday rotation may cancel on average over the
cross section of the beam, the quadratic term in∆ in eq 30 will
not generally average to zero in the presence of field inhomo-
geneities, as shown below.

The paths of the probe light through the sample and the FC
are described as cylinders with lengths equal to the path lengths
of the sample cell and FC and diameters equal to that of the
probe beam. The signal (for a homogeneous sample), averaged
over the cross section and path length of a uniform and
collimated probe beam, is

where

∆ ) HD(MCBSW) - FC (31)

∆ ∝
(λSW

2 - λFC
2)

(λ2 - λSW
2)(λ2 - λFC

2)
(32)

sD ≈
-(CB + 〈MCB

a ∫0

a
HD(r,θ,z) dz〉 + 〈∆〉)

â + (4â)-1[〈B〉 + 〈G〉]
(33)

〈∆〉 ) 〈MCBSW

a ∫0

a
HD(r,θ,z) dz - 1

b∫0

b
FC(r,θ,z) dz〉 (34a)

B ) 〈(CB +
MCB + MCBSW

a ∫0

a
HD(r,θ,z) dz -

1
b∫0

b
FC(r,θ,z) dz)2〉 (34b)

sD ≈ -(CBD
T)(1 - r)2â

(1 - r)2â2 + 2r
≈ -(CBD

T)

â + (2r/â)
(27)

sD ≈ -(HD(MCB))

â + (4â)-1HD
2((MCB)2 + (MCD)2)

(28)

sD ≈ -(CBD
T - 2φ - δ)

â + δ + (2â)-1[φ2 + (φ + δ)2 - (2φ + δ)(CBD
T)]

(29)

sD ≈ -(CBD
T) + ∆

â + (4â)-1[(CBD
T + ∆)2 + (CDD

T)2]
(30)
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and

HD(r,θ,z) and FC(r,θ,z) are the distributions in cylindrical
coordinates, centered on the light beam, of the magnetic field
and Faraday compensator, respectively. The averaging, indi-
cated by brackets, is defined by

The path lengths of the sample and Faraday compensator area
and b, respectively, and the radius of the probe beam isR.
(Differences in the contributions of cell materials and solvent
to MCBSW and FC are neglected for simplicity).

Consider an example in which the magnetic field of the
sample and the Faraday compensator have small radially
symmetric inhomogeneities. That is,

whereH0 and FC0 are the respective field magnitudes at the
center of the probe beam. The value of FC0 giving average
cancellation of∆ (for a parallel longitudinal field,ψ ) 0) is
found by solving

which yields

or

Using the inhomogeneities described by eqs 35 and 36, at the
value of FC0 given by eq 38, the measured signal can be derived
from eqs 33 and 34 as

to second order inf andh. Note that from eq 35,H0(1 + hR2/
2) is the average sample field value. Equation 40 shows that
although the Faraday effect from the solvent and cell windows
can be canceled in the numerator, mismatched radial inhomo-
geneity,h * f, attenuates the signal via the second-order term
in the denominator. Equation 40 establishes the maximum
relative field inhomogeneity,(f - h)R2, that can be tolerated
for a particular experiment: ifp is the minimum detectable
percent signal attenuation, then we have

As an example, for a ratio of Faraday birefringence toâ of unity

(a magnitude typical for a 0.5 cm path length cell in the visible
spectral region, at 1 T field strength andâ ) 1°), a maximum
inhomogeneity mismatch corresponding to 70% ofH0 could be
tolerated atp ) 1%. Mismatch tolerances atp ) 1% are plotted
in Figure 2 for birefringence:â ratios up to 10.

Stray Linear Birefringence.Linear birefringence both rotates
the plane of linearly polarized light and adds ellipticity to the
polarization. When the linear birefringence from the optical
cell windows is included in eq 24, the signal in the absence of
sample orientation becomes the equation shown in Chart 3,
where theφ’s denote the orientation of the fast axis and theδ’s
give the retardance for each birefringent window, indicated by
the numbered subscripts. Perhaps the most important feature
of eq 42 is the absence of any first-order linear birefringence
terms (in the sense that terms with factors that involve two small
optical effects, such as CD‚δ, are second order). Such first-
order LB terms do appear in the ellipsometric MCD method
and give it a greater sensitivity to LB artifacts than that predicted
here for the MORD technique. This can result in an experi-
mental advantage for MORD over MCD measurements in the
presence of stray birefringences, whether induced by inadvertent
strain, flow of anisotropic solutes, or photoselection (see below).

Equation 42 shows that stray linear birefringences cause a
baseline offset and attenuate the signal (summation terms in
the numerator and denominator, respectively) and that the
magnitudes of these effects are proportional to the products of
the retardances of the windows and their orientations. (Note
that if the dispersions of the window retardances are different
than that ofâ, the attenuation and offset of the signal will depend
on the wavelength.) Hence, there is a set of orientations for
uniaxially strained windows that eliminates the offset and
attenuation. More significantly, the stray birefringence intro-
duces a second-order MCD (CD) coupling term into the
numerator and denominator. The MCD (CD) term in the
numerator is scaled by the retardance of the first window
(reflecting the fact that MCD (CD) can be measured using
elliptically polarized light,17 as window birefringence introduces
ellipticity into the probe beam). The birefringence terms in the
denominator are made negligible by selecting an appropriately
large value of â. Similarly, the use of low-strain optics
(retardance small compared toâ) also reduces the effect of terms
introduced by stray birefringence. Generally, high- quality
optics, selection ofâ, and proper orientation of birefringent axes

Figure 2. Percent difference in sample and compensator radial field
inhomogeneities, 100(f - h)R2, giving a 1% signal attenuation as a
function of solvent-window Faraday birefringence (in units ofâ).

G ) 〈(CD + MCD
a ∫0

a
HD(r,θ,z) dz)2〉 (34c)

〈f(r,θ.z)〉 ≡ 1

πR2∫0

2π
dθ∫0

R
[f(r,θ,z)]r dr (34d)

HD(r,θ,z) ) H0(1 - hr2)cosψ (35)

FC(r,θ,z) ) FC0(1 - fr2) (36)

〈∆〉 ) 〈MCBSW

a ∫0

a
HD(r,θ,z) dz - 1

b∫0

b
FC(r,θ,z) dz〉 ) 0

(37)

FC0 )
MCBSWH0(2 - hR2)

(2 - fR2)
(38)

FC0 ) MCBSWH0[1 + (f - h)R2/2 + f(f - h)R4/4 + ...]

(39)

sD ≈ -(CB + H0(1 - hR2/2)MCB)

â[1 + (H0MCBSW(f - h)R2

4x3â )2]
(40)

(f - h)R2 j (0.5p)1/2â(H0(MCBSW))-1 (41)

Dispersion Measurements. 1. J. Phys. Chem. A, Vol. 102, No. 45, 19988745



may all be used to reduce the influence of stray linear
birefringence.

Sample Orientation and Photoselection.In many time-
resolved applications, such as the one presented in the following
article, the sample is photolyzed with a linearly polarized laser
pulse and spectral measurements are made at various delay times
after photolysis. At times that are short compared to the
rotational diffusion time, incomplete photolysis produces a
distribution of phototransformed molecules having a preferred
orientation with respect to the polarization axis of the excitation
pulse. This photoselection process results in the partial align-
ment of an initially isotropic sample, an alignment that eventu-
ally decays exponentially with a time constant determined by
the rotational diffusion constant.10 Thus, the possibility of
photoselection effects needs to be considered in time-resolved
spectroscopic measurements when the delay time is shorter than
about 3 rotational diffusion lifetimes of the sample under
investigation. For biological samples, this lifetime ranges from
about 20 ns for myoglobin18 to about 20 ms for the purple
membrane patches of bacteriorhodopsin (bR).19

Faraday rotation of the pump beam will generally affect the
photoselection of samples in a magnetic field, except when the
beam propagation is transverse to the field. Two limiting
excitation geometries are discussed here, the collinear and
transverse, or crossed, geometries. We assume that the probe
beam is always collinear with the applied field, so that in the
crossed geometry, the excitation beam propagation axis is
perpendicular to both the probe propagation axis and the field
lines, whereas in the collinear geometry, all three are aligned.
The polarization vector of a crossed excitation pulse can have
both parallel and perpendicular components relative to the probe
propagation axis, with directions and magnitudes that remain
constant as the beam propagates through the field. The
polarization vector of a collinear excitation pulse, being
transverse to the probe-field axis, is typically determined initially
by the orientation of the first polarizer in the MORD apparatus
before undergoing Faraday rotation in the magnetized sample.

The signal, second order in sample optical properties (now
neglecting stray window birefringence), is

a result that can be simplified in reference to the crossed and
collinear geometries described above. In the crossed geometry,
if the pump beam is linearly polarized perpendicular to the probe
propagation direction and forms an angleø with the transmission
axis of the first polarizer (X axis in Figure 1), then

where LD0 and LB0 are the linear dichroism and birefringence,
respectively, along the laser polarization axis. The signs of LD0

and LB0 are determined in photolyzed samples by the relative
absorptive and refractive differences between initial and excited
molecules.

If ø is considered to be nearly a multiple ofπ/2, eq 43
becomes eq 45 shown in Chart 4, where the subscripts on LD0

and LB0 have been dropped. If circular effects are considered
to be small relative to other optical properties, this reduces to
eq 46 shown in Chart 5.

The first linear dichroism term in the numerator is the same
as that in eq 25. This term is zero when the pump polarization
is either perfectly parallel or perpendicular to the transmission
axis of the first polarizer (ø ) 0° or 90°, respectively) but can
distort the shape of optical rotation spectra (and the apparent
kinetics of photolyzed samples) ifø is misaligned by even a
fraction of a degree, because of the large relative size of
photoselection-induced LD. In any event, this term, being field
independent, cancels when MCB is determined from the
difference of opposed-field measurements. The third term in
the numerator of eq 46 represents a coupling between the
photoselection-induced linear dichroism of the sample (the
component parallel to the pump polarization) and the Faraday
rotation of the sample solvent and cell. This term is analogous
to the coupling between MCBSW and LB that appears in near-
null ellipsometric measurements of MCD.9 It arises in the same
physical manner as the first-order linear dichroism term, except
that rather than being caused by skewed alignment of the
polarizer transmission axes and the pump polarization, it is the
Faraday effect of the solvent and cell that rotates the probe
polarization out of alignment with the polarizer transmission
axis. Because the optical rotation of the solvent and cell can
be quite large, this coupling can distort time-resolved spectral
band shapes. Moreover, this term is field dependent and does
not subtract from opposite-field determinations of MCB. It,
thus, may complicate time-resolved MCB measurements using
the crossed geometry when the pump polarization vector has
components transverse to the probe propagation.

The squared terms involving LD and LB in the denominator
of eq 46 can result in an attenuation of the measured signal.
Thus, photoselection-induced LD and LB can cause a wave-
length- and time-dependent attenuation of the signal at times
before rotational diffusion is complete. Although these terms
have a sin2(2ø) dependence and vanish whenø ) 0° or 90°,
these values ofø are also the orientations that maximize the
contribution of the third term in the numerator of eq 46. In
general, however, attenuation by the latter term can be mini-
mized by an appropriately large selection ofâ. The third term
in the denominator arises from coupling between the Faraday
effect of the solvent-cell and the component of photoselection-
induced linear dichroism that is diagonal to the pump polariza-
tion. As both factors can be large, their product can lead to
distortion of the measured signal, a potential problem that can
be minimized both by appropriate selection ofâ and by using
the excitation geometry described below.

CHART 3

sD ≈
-[CBD

T + CDD
Tδ1 cos(2φ1) +

1

2
∑
i)1

4

δi
2 cos(2φi) sin(2φi) + ∑

i)1

3

∑
j)i+1

4

δiδj cos(2φi) sin(2φj)]
â +

CDD
T

2â
∑
i)1

4

δi sin(2φi) + (4â)-1[(∑
i)1

4

δi sin(2φi))
2 + (CBD

T)2 + (CDD
T)2]

(42)

sD ≈ -2â{2(CBD
T + LD′) - LB(CDD

T) + LD′LD +

LB′LB + LD(CBD
T + MCBSW)}{4â2(1 + LD) + LD′2 +

LB′2 - 2LB′(CDD
T) + 2LD′(CBD

T) + (CBD
T)2 +

(CDD
T)2 + 2LD′(MCBSW)}-1 (43)

LD ) LD0 cos(2ø) LD′ ) LD0 sin(2ø)

LB ) LB0 cos(2ø) LB′ ) LB0 sin(2ø) (44)
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It is well-known that birefringence effects are avoided in
uniaxial samples by probing along the optic axis. This uniaxial
probe geometry is realized in the crossed excitation geometry
by orienting the polarization of the pump beam along the probe
propagation direction. In this case, the sample appears isotropic
to the probe beam and the measurement is free by symmetry
from the orientation effects described above.20 (The following
article demonstrates measurements using isotropic excitation as
well as the effects of anisotropic excitation described by eq 46.)
This uniaxial probe geometry is also achieved (on average over
the path length) when a circularly or randomly polarized
collinear excitation beam is used. However, the presence of
linear polarizers in the probe-beam path makes such collinear
polarization geometries difficult to implement, because optics
to circularly polarize or depolarize laser light typically have
stray linear birefringence and cannot be placed between crossed
polarizers without interfering with a near-null measurement.

We briefly consider collinear excitation with a linearly
polarized beam for which the polarization direction is deter-
mined by the first (probe beam) polarizer. Faraday rotation of
the probe and excitation beams generally complicates the signal
description in this case because the beam polarizations are
functions of path length and wavelength. Probe and pump
polarizations will diverge as the beams travel through the
magnetized sample and the Faraday compensator unless their
wavelengths are identical, in which case the beams are rotated
identically at a given path length.

Finally, we consider the combined effects of stray linear
birefringences and oriented sample birefringence and dichroism.
With the same restrictions as those used in the derivation of
eqs 42 and 46, the signal is given by

where the lowest order couplings between LB and LD, the
birefringence and dichroism of oriented samples, and the
window birefringences,δi, now appear as the third and fourth
terms in the numerator and as a similar term in the denominator.
(An additional term that is second order in theδi’s is also
retained in the denominator for completeness.)

Summary

We have presented a detailed theoretical analysis of a near-
null polarimetric technique for MORD measurements, address-
ing, in particular, photoselection-induced artifacts that may affect
nanosecond and faster time-scale measurements on photolyzed
samples. This analysis shows that the MORD signal is
effectively amplified by the use of a smallâ value (cf. eq 4),
which provides the signal to instrumental noise ratio needed
for nanosecond time scale measurements with bright but
relatively unstable light sources such as flashlamps. The price
paid for this amplification is a greater sensitivity to linear
dichroism in ordered samples. (Although this situation is an
improvement over that for the near-null ellipsometric MCD
method. The latter method has a greater sensitivity to linear
birefringence, which being more spectrally dispersed than linear
dichroism is more likely to interfere with measurements within
absorption bands than is a dichroism artifact likely to interfere
with measurements of circular birefringence in the MORD
method.) In particular, it may be necessary to consider the
effects of photoselection-induced orientation after photoexci-
tation, even for initially isotropic samples, if such measurements
are made at times before rotational diffusion of the sample is
complete. The (photoselection-induced) linear dichroism term
that then appears to first order in near-null natural ORD
measurements can be canceled in MORD by subtracting
opposing-field measurements, but the second-order term cou-
pling solvent-cell Faraday rotation with the sample’s linear
dichroism does not cancel in MORD. However, this artifact is
found to be minimized by a uniaxial pump-probe geometry,
i.e., by aligning the photoselection-induced optical axis with
the probe propagation axis, an arrangement that is also stable
to first order with respect to angular misalignments.21 Finally,
we also find that a minimum level of field homogeneity is
required for accurate near-null MORD measurements (a condi-
tion that does not appear in conventional polarimetric MORD
methods), although this requirement is not found to be very
severe at typical field strengths. In the following article, we
present experimental demonstrations of these results and an
application to the kinetics of ligand rebinding and protein
relaxation after myoglobin-CO photolysis.
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